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 A method of determining the boundary conditions for the Navier–Stokes equations in stream function–vortic-
ity variables, used for simulation of a nonstationary, asymmetric laminar flow of an incompressible viscous
fluid around bodies, has been proposed. Universal relations for desired functions on surfaces around which
the stream flows, independent of the method of spatial discretization, have been obtained.

Introduction. It is customary to use the Navier–Stokes equations in stream function ψ–vorticity ω variables
for simulation of plane laminar flows of an incompressible viscous fluid [1–3] because these equations are simpler
from the standpoint of numerical realization than the analogous equations in natural velocity u, v–pressure p variables.
However, as is known, it is difficult to write the boundary conditions for the ψ–ω model, which limits the use of it
for calculating nonstationary, asymmetric viscous flows. The point is that for the equation of vorticity transfer
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∂ω
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Re
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there are no physical boundary conditions on the surfaces γi (i = 1, 2, ...), around which a stream flows, while for the
Poisson equation

∆ψ = − ω ,   ω = 
∂v

∂x
 − 
∂u

∂y
 ,   u = 

∂ψ
∂y

 ,   v = − 
∂ψ
∂x

 , (2)

determining the stream function there exist two natural boundary conditions:

x, y 2 γi :   ψ = ψi ,   
∂ψ
∂n

 = vi .
(3)

Hereinafter, n denotes the outer normal to the boundary and vi denotes the tangential velocity of the fluid on γi. The
quantities ψi are constants in the case where the adhesion conditions are set on the surfaces around which the fluid
flows and the equality

ψi (s) = ψi
0
 + ∫ 

0

s

vn
i
 (s) ds

is fulfilled when the fluid is blown in or drawn off with a velocity vn
i . In this equation, integration is performed over

the arcs of the surface γi from the arbitrary point s = 0 at which the constant ψi
0 should be determined.

Traditionally [1, 2], the first equality of (3) is considered as the Dirichlet boundary condition for Eq. (2), and
the second equation — the Neumann condition — is used for determining the vorticity at the boundary ωγ. This prob-
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lem was solved in a large number of works, of which review [4] stands out. The authors of this work thoroughly ana-
lyzed different variants of finite difference and simpler finite-element representations of the Thom–Burgraf formula and
its higher-order analogs. Moreover, they proposed an integral condition for ωγ that suggests the introduction of a spe-
cial system of basis functions at the boundary and leads, on discretization, to a system of equations with a filled
asymmetric matrix. However, this system, in our opinion, is not fully suitable for practical calculations.

Along with the determination of the boundary conditions for Eq. (1), of crucial importance is the prescription
of the quantities ψi and vi in relations (3). So far, in solving theoretical problems with the use of the ψ–ω model, the
stream function and velocity at a wall were assumed to be definite in this model. However, in practice these quantities
can be definite only in certain cases, e.g., in a flow around a channel or in a steady-state symmetric flow in an indi-
vidual body.

In the present work, we considered the fairly common problem on a viscous-fluid flow around a system of
bodies. The boundary conditions for the Navier–Stokes equations in transformed variables have been formulated, and
numerical methods of solving these equations have been proposed.

Formulation of the Problem. We considered the model problem on a plane viscous-fluid flow around a sys-
tem of N bodies (see Fig. 1). The flow region D is bounded by the input cross section Γin, for which we constructed
a velocity diagram with a flow rate Q:

u = U (y) ,   v = 0 ;   ψ = ψ0 (y) = ∫ 
0

y

U (ξ) dξ ,   ψ0 (H) = Q ;

streamlines Γtop and Γbot; a distant output cross section Γout, in which v = 0 is assumed to be equal to zero, and im-
penetrable inner surfaces γi (i = 1, ..., N) of the bodies around which the stream flows, at which the boundary condi-
tions (3) are set.

Two different formulations of the problem were considered within the framework of the above scheme.
1. The horizontal streamlines Γtop and Γbot are immovable walls of a channel, at which the adhesion condi-

tions vn = vτ = 0 are set.
2. The streamlines Γtop and Γbot separate a periodicity cell in a grid of the surfaces around which the stream

flows. In this case, the symmetry (ideal slipping) conditions vn = 0, ∂vτ ⁄ ∂n = 0 are set and the tangential components
of the velocity vector at the upper and lower boundaries are assumed to be equal.

The external boundary conditions for Eqs. (1) and (2) have, in accordance with the above-described scheme
of flow, the following form:

x, y 2 Γin :   ψ = ψ0 ,   
∂ψ
∂n

 = 0 ,   ω = ω0 B − 
du
dy

 ; (4)

Fig. 1. Scheme of a uniform flow around a system of bodies.
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x, y 2 Γout :   
∂ψ
∂n

 = 0 ,   
∂ω
∂n

 = 0 ; (5)

x, y 2 Γtop,bot :   ψ = ψ0 (y) ,   ∂ψ
∂n

 = 0 ; (6)

x, y 2 Γtop,bot :   ψ = ψ0 (y) ,   ω = 0 . (7)

Boundary condition (6) was written for problem 1 and boundary condition (7) was written for problem 2. In addition,
the initial vorticity distribution should be determined; it can be, e.g., ω = 0.

Note that the velocities vi in boundary conditions (3) are assumed to be definite (more exactly they are deter-
mined using additional models of interaction of the flow with the bodies) and the stream function ψi at the boundaries
is calculated by relations (1)–(7).

Determination of the Stream Function at the Boundaries of Bodies around Which a Stream Flows. We
first consider problem 2, for which the ideal-slipping and periodicity conditions are set on the horizontal walls. Let us
introduce the function η1(x, y) satisfying the boundary-value problem

∆η1 = 0 ,   x, y 2 D ;   Γin,out ,   γ2,..,N :   
∂η1

∂n
 = 0 ;   Γtop,bot :   η1 = 0 ;   γ1 :   

∂η1

∂n
 = 1 . (8)

Multiplying Eq. (8) by ψ and integrating it over the region D, we obtain, using the Green formula,

  ∫ 
D

∇ψ⋅∇η1dD = ∫ 
Γ

ψ 
∂η1

∂n
 ds . (9)

Here Γ denotes integration over all boundaries. Multiplying Eq. (2) by the function η1 and integrating it over D, we
obtain

  ∫ 
D

∆ψη1dD = ∫ 
Γ

η1 
∂ψ
∂n

 ds − ∫ 
D

∇ψ⋅∇η1dD = − ∫ 
D

ωη1dD .

Substitution of formula (9) into this equality gives the integral relation

 ∫ 
Γ

η1 
∂ψ
∂n

 ds − ∫ 
Γ

ψ 
∂η1

∂n
 ds = − ∫ 

D

ωη1dD , (10)

which should be true for any harmonic function η1. Identity (10) was written apparently for the first time in [5] as
the condition of consistency between the vorticity field and the stream function in the Navier–Stokes equations and
was used for formulation of nonlocal boundary conditions for ω on γ. Below, the system of relations (10) will be used
for determining the constants ψi.

It follows from boundary conditions (4), (5), (7), and (8) that

 ∫ 
Γ

η1 
∂ψ
∂n

 ds =  ∑ 

i=1

N

 vi  ∫ 
γi

 η1ds ,   ∫ 
Γ

ψ 
∂η1

∂n
 ds = ψ1 γ1 + Q  ∫ 

Γtop

 
∂η1

∂n
 ds .

Substitution of these integrals over the boundary into (10) gives an explicit expression for the boundary value of the
stream function ψ1 expressed in terms of the vorticity ω and the auxiliary function η1 — a solution of auxiliary prob-
lem (8):
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ψ1 = 
1

γ1
 






 ∑ 

i=1

N

 vi  ∫ 
γi

 η1ds − Q ∫ 
Γtop

 
∂η1

∂n
 ds + ∫ 

D

η1ωdD






 . (11)

The constants ψi (i = 2, ..., N) are determined analogously using the auxiliary problems

∆ηi = 0 ,   x, y 2 D ;   Γin,out ,   γk≠i :   
∂ηi

∂n
 = 0 ;   Γtop,bot :   ηi = 0 ;   γi :   

∂ηi

∂n
 = 1 . (12)

Thus, to determine the dynamics of the stream function ψi(t) on the surfaces γi, it will suffice to preliminarily
solve auxiliary problems (8) and (12) and then to use formula (11) at each time step in the process of solving non-
stationary problem (1), (2).

In the case of simulation of a symmetric flow around an individual body, expression (11) can take a simpler
form, the trial function η1 is symmetric relative to the middle line y = H/2, and the equality

   ∫ 
Γtop

 
∂η1

∂n
 ds = − 

γ1
2

follows from (8). Moreover, in the periodic problem considered, the condition of solution of Eq. (2) is

v1 γ1 = − ∫ 
D

ωdD .

Substituting these expressions into (11), we obtain the descriptive formula

ψ1 = 
Q

2
 + 

1

γ1
 ∫ 
D

ω (η1 − η
__
) dD ,   η

__
 B 

1

γ1
  ∫ 
γ1

 η1ds , (13)

which, at v1 = 0, gives the trivial result ψ1 = Q/2.
We now consider problem 1, in which adhesion condition (6) is set on the channel walls. In this case, the

auxiliary functions ηi are conveniently determined in the following formulation:

∆ηi = 0 ,   x, y 2 D ;   Γin,out,top ,   γk≠i :   
∂ηi

∂n
 = 0 ;   Γbot :   ηi = 0 ;   γi :   

∂ηi

∂n
 = 1 , (14)

and formulas (11) take a simpler form:

ψi = 
1

γi
 






 ∑ 

k=1

N

 vk  ∫ 
γk

 ηids + ∫ 
D

ηiωdD






 ,   i = 1, 2, ..., N . (15)

The method proposed for determining the boundary values of the stream function will be used without
changes in the case of a channel with curvilinear boundaries.

Calculation of the Boundary Values of the Vorticity. If an algorithm based on separate, successive solving
of Eqs. (1) and (2) is used for numerical solution, it is best to set main boundary conditions for ω rather than the
Neumann conditions for the stream function (3). They are usually derived [1–4, 6–8] by discrete representation of Eq.
(2) so that the boundary conditions ∂ψ ⁄ ∂nγ = v are fulfilled. However, the use of special methods of approximation
in the neighborhood of the boundaries can lead to the appearance of nonphysical sources of vorticity and, as a conse-
quence, to a distortion of the actual pattern of the flow. Below, we propose a universal approach to the construction
of grids, consistent with the main computational scheme, for approximations of the boundary conditions for a vortex.
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Equation (2) for the stream function is solved using only the Dirichlet condition from (3), (6) and (7), and
the values of ψ at the boundaries around which the stream flows are determined from formulas (11) and (15). The
grid approximation is constructed on the basis of the integral identity

 ∫ 
D

∇ψ⋅∇ηdD = ∫ 
D

ωηdD , (16)

in which η is an arbitrary function equal to zero at the boundary points, at which the Dirichlet conditions are set, and
ψ = ψi at the boundaries γi. Equation (16) leads, on finite-element or finite-difference discretization, to a system of
linear algebraic equations. The main boundary conditions are determined at the matrix level: the lines corresponding to
the points with conditions of the first kind (the grid points lying on the boundaries γi, Γin, Γtop and Γbot) are reduced
to zero, the diagonal elements are assumed to be equal to unity, and definite values of ψi are written on the right side;
symmetric charges are made in the columns.

Equation (2) with boundary conditions of the second kind is used for determining ω at the boundaries. In this
case, the integral identity will have the form

 ∫ 
D

ωηdD =  ∫ 
D

∇ψ⋅∇ηdD −  ∑ 

i=1

N

 ∫ 
γi

viηds , (17)

where η is not limited by any boundary conditions. The change from (17) to finite-dimensional schemes is made by
analogy with that for Eq. (16). The approximating equation has the form

Mω = Λψ + f ,

where M is a symmetric sparse matrix (element mass matrix in the terminology of the finite-element method), Λ is a
grid analog of the Laplace operator with Neumann boundary conditions (fluid mass matrix), ψ is a solution of problem
(16) satisfying the main boundary conditions, and f is the force vector that is due to the last term on the right side of
(17) and differs from zero only at the movable boundaries. The deficient Dirichlet conditions for the vorticity are ob-
tained by selecting ω values corresponding to the boundary points from the solution of the system of equations ob-
tained. Note that the matrix M has a condition number of the order of unity; therefore, the system is conveniently
solved using iteration methods, in particular the conjugate-gradient method with diagonal prestipulation [9].

Some points need to be made to the algorithm proposed. First, it is universal and can be used, without
changes, in both finite-difference methods of discretization of Eq. (16) and in any finite-element methods of arbitrary
accuracy. This algorithm is also insensitive to the shape of the flow-region boundary. Second, the boundary conditions
for ω determined by this method have an approximation order equal to that of the grid schemes for Eqs. (1) and (2).
Third, the boundary condition constructed on the basis of Eq. (17) does not disturb the conservatism of the grid
schemes. In particular, a vorticity balance is obtained if η B 1 in (17). Finally, it should be noted that, in some cases,
the matrix M can be diagonal. For example, this is the case for finite-difference methods of the second order of ap-
proximation on an orthogonal grid and simpler finite-element methods on triangular and quadrangular grids, while the
mass matrix is calculated using quadrature formulas by the tops of elements. Simple calculations have shown that, in
the case where a uniform rectangular grid is used, Eq. (17) for a rectilinear boundary leads to the known Thom for-
mula that is usually called the first-order formula [1–4].

On the Velocity of a Flow around Surfaces. In the above-considered problems, we used the quantities vi de-
termining the velocity of a fluid flow around bodies. In the simplest case, they represent definite time functions, using
which we obtain, if adhesion conditions are set at the fluid-wall contact, a model of the action of moving surfaces on
a viscous-fluid flow. The most well-known problems of this class are problems on a flow in a cavity with a movable
cover and a flow around a rotating circular cylinder [8, 10, 11]. At the same time, the above-indicated mathematical
formulas can be used in solving problems on interaction of a flow with bodies around which the stream flows in the
case where the flow velocity at the walls is unknown.
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By way of example, we will consider a flow around a circular cylinder with a fixed axis and a rotational de-
gree of freedom.

If the cylinder has no inertia, its movement is completely determined by the flow; in this case, the body as a
whole is free from shear stresses:

1
Re

 ∫ 
γ

στds D ∫ 
γ

ωds = 0 . (18)

Since the vorticity at the boundary, according to (17), depends linearly on v, Eq. (18) uniquely determines the velocity
of rotation of the cylinder at each instant of time.

If the cylinder of radius R is made of a material with a density ρc and has a mass m = ρcπR2 (per meter of
the length), its rotation is determined by the equation [12]

M = FR ,   F =  ∫ 
0

2πR

 ρν 
∂vτ
∂n

 ds ,   M = J 
d

dt
 




v1

R



 ,   J = 

mR
2

2
 . (19)

From (19) follows the expression for the linear velocity v:

dv1

dt
 = 

2νρ

πρcR
2  ∫ 

0

2πR

 
∂vτ

∂n
 ds ,

which can be written in the dimensionless form

dv1

dt
 = − 

2

π
 
Kρ
Re

 ∫ 
γ

ωds ,   Kρ = 
ρ
ρc

 . (20)

Equation (20) should be supplemented with the initial conditions v1(0) = v1
0.

Note that, in the case of an infinitely light cylinder (Kρ → ∞), (20) is transformed into the condition of free
rotation (18).

Algorithm of Numerical Solution. The approaches to the formulation of boundary conditions proposed in the
present work were used for construction of algorithms for numerical solution of the problem on an external flow
around a circular cylinder at Reynolds numbers of the order of 150. We considered the cases where the cylinder was

a) in the stationary state,
b) in the state of forced rotation with a definite velocity,
c) in the state of free rotation as a result of the interaction with the flow,
d) in the state of inertial rotation.
We first constructed a grid and solved problem (8) for determining the auxiliary function η1. The initial con-

ditions were set and then the functions ψ and ω were calculated in a time cycle tj = jτ (j = 1, 2, ...).
The scheme of solving the problem in a time layer was as follows.
1. The rotational velocity of the cylinder is determined by the values of the functions ψ and ω in the

previous time layer. The value of v1 is definite in cases (a) and (b); in case (c), v1 in Eq. (17) is selected such
that condition (18) was fulfilled; in the case of inertial rotation (d), v1 is determined using the explicit scheme
for problem (20).

2. The problems for the stream function and vorticity are solved successively in an iteration cycle. At first,
the boundary value of ψ1 is determined by formula (13) and problem (16) is solved for ψ. The stream-function distri-
bution obtained and the rotational velocity v1 are used for calculating the vortex at the boundary in the process of
solving problem (17). Then the Dirichlet problem is solved for Eq. (1), which on discretization with respect to time,
takes the form

774



ω − 
τ

Re
 ∆ω = φ (ψj−1

, ωj−1) ,   φ (ψ, ω) = ω − τ 




∂ψ
∂y

 
∂ω
∂x

 − 
∂ψ
∂x

 
∂ω
∂y




 .

Spatial discretization of the problem for ω, as well as the other grid approximations, is done on the basis of
the integral identity

 ∫ 
D

ωηdD + 
τ

Re
 ∫ 
D

∇ω⋅∇ηdD = ∫ 
D

φηdD ,

ω = ωγ at the boundary γ. The iterations are completed when

max ωγ
k+1

 − ωγ
k ⁄ max ωγ

k < ε D 10
−4

 ,

where k is the number of an iteration.
This algorithm of numerically solving the Navier–Stokes problem was realized by the finite-element method

with the use of nonuniform grids of linear triangular elements and successfully tested on the basis of known results of
numerical simulation of a separation flow around an immovable circular cylinder and a circular cylinder rotating with
a constant velocity [10, 11]. The results of the calculations will be presented and analyzed in a separate work.

Conclusions. One of the main results of the present work is the derivation of closing equations (11) and (13),
which allow one to represent the stream function on the surface of bodies around which a complex stream flows in
terms of auxiliary harmonic functions ηi. These functions represent solutions of the simple, one-type problems (12) and
(14). They are determined only by the geometry of the computational region and, therefore, are calculated once. An-
other important result is Eq. (17) for the vorticity distribution over the surface of a body, consistent with the fields of
ψ and η inside the computational region. In comparison with the traditional approach, where the values of ψi are de-
termined based on certain geometric grounds and special formulas are written for ω at the boundary, the universal re-
lations obtained by us practically do not increase the computational expenses. These relations allow one to substan-
tially extend the range of problems on viscous flows that can be effectively solved within the framework of the
Navier–Stokes model in transformed variables.

This work was carried out with financial support from the Russian Basic Research Foundation (grant Nos. 03-
01-00015, 03-01-96237, and 04-01-00484) and the program "Universities of Russia" (grant No. 04.01.009).

NOTATION

D, computational region; f, force vector; F, viscous-friction force, H; J, moment of inertia, kg⋅m2; M, element
mass matrix; m, mass of the body, kg; N, number of bodies; n, normal to the boundary; p, pressure; Q, flow rate; R,
radius of the cylinder, m; Re, Reynolds number; s, arc of the surface; t, tj (j = 1, 2, ...), time, time layer of the com-
putational scheme; u, v, vn, vτ, components of the velocity vector; U, velocity of the flow at the input to the channel;
x, y, Cartesian coordinates; ε, criterion of completion of iterations; φ, right side of the equation for ω in a time layer;
γ, γi, and γk (i, k = 1, 2, ..., N), surfaces of the bodies around which the stream flows; Γ, Γtop, Γbot, Γin, Γout, outer
boundaries of the computational region; η, trial function; ηi (i = 1, 2, ..., N), auxiliary harmonic function; Λ, stiffness
matrix; ν, kinematic viscosity of the fluid, m2/sec; ρ and ρc, densities of the fluid and the cylinder, kg/m3; στ, shear
stress at the boundary; τ, time step of the computational scheme; ω, vorticity; ωi and ωγ, boundary values of ω; ψ,
stream function; ψi, boundary values of ψ on the surface i. Subscripts: c, cylinder; i, k, ordinal number of a body; j,
number of a time layer of the computational scheme; n, normal component; top, top; bot, bottom; in, input; out, out-
put; γ, boundary value; ρ, dimensionless density criterion; τ, tangential component.
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